Deskripsi Singkat Tentang Pemrograman Mikro

Halo agan - agan. Ane kembali lagi nih, artikel sekarang ini merupakan suatu tugas / persyaratan untuk UAS. Maklum, mahasiswa :D. Oke, sudah cukup basa basi nya :)


Pemrograman Mikro
Unit kendali logika (CLU atau Control Logic Unit) mengatur seluruh aktifitas perangkat keras di dalam komputer, memberi kode pada intruksi tersebut untuk menentukan operasi yang akan dilaksanakan, menentukan sumber dan tujuan data, dan menyebabkan perpindahan data dan eksekusi operasi yang diperlukan. CLU mengulangi seluruh proses sampai sebuah operasi HALT secara tiba-tiba masuk kedalam program dan dieksekusi. Suatu unit logika kendali hard-wired memerlukan perancangan ulang perangkat keras secara ekstensif jika serangkaian intruksi harus dikembangkan atau jika sebuah fungsi harus diubah. Sebaliknya, dalam CLU microprogrammed, serangkaian intruksi mikro (program-mikro) yang berhubungan dengan
Pemrograman mikro adalah proses penerjemahan dan eksekusi dari setiap instruksi prosesor menjadi urutan instruksi yang lebih kecil mikro. Ini untuk mengatakan bahwa mikro-program adalah proses penulisan kode mikro untuk prosesor-mikro. Ini mendefinisikan fungsi prosesor-mikro sambil mengeksekusi instruksi mesin-bahasa. Juga dikenal sebagai mikro-coding, konsep pemrograman mikro pertama kali dikembangkan pada tahun 1951 oleh Maurice Wilkes. Ini adalah teknik yang digunakan dalam menerapkan sebuah Unit Kontrol. Micro-kode atau mikro-program dikembangkan sebagai instruksi set CPU. Dengan demikian, insinyur desain CPU menulis mikro-program untuk mengimplementasikan set instruksi mesin. Dalam proses pengembangan produk perangkat lunak, ini-kode mikro dapat ditulis atau diubah beberapa kali bahkan selama tahap desain nanti. fleksibilitas seperti di affords mikro-program besar kebebasan untuk merancang insinyur untuk mengubah dan / atau datang dengan set instruksi yang lebih kompleks dan dengan demikian sebagian besar memfasilitasi desain CPU fleksibel. Pada beberapa komputer, mikro-kode yang disimpan dalam ROM dan karenanya tidak dapat dimodifikasi. Tapi di komputer yang lebih besar, mereka disimpan dalam EPROM dan, dengan demikian, dapat digantikan dengan versi segar atau yang lebih baru.
Konsep pemrograman mikro juga digunakan dalam pengembangan perangkat lunak online. perkembangan pesat dalam teknologi komputer dalam beberapa tahun terakhir telah membuat konsep pemrograman mikro tampak agak berlebihan. Program menjadi lebih kompleks dan ini memiliki dampak langsung pada kinerja perangkat lunak dan pembangunan. Interpreter dan compiler telah membuat kode tingkat rendah dari perintah tingkat tinggi. Kemajuan tersebut telah digantikan keunggulan microprogramming. Ada telah skema desain CPU yang tidak menggunakan pemrograman mikro seperti TTA Prosesor, Superscaler Prosesor, Prosesor RISC, dan Prosesor RISC. Pemrograman mikro menawarkan suatu pendekatan yang lebih terstruktur untuk merancang unit kendali logika (CLU) dibandingkan dengan kendali hard-wired. Rancangan pemrograman mikro relatif mudah diubah-ubah dan dibetulkan,menawarkan kemampuan diagnostik yang lebih baik dan lebih dapat diandalkan daripada rancangan hard-wired. Karena waktu akses memori kendali ROM menentukan kecepatan operasi CLU maka kendali microprogrammed mungkin menghasilkan CLU yang lebih lambat dibandingkan dengan kendali hard-wired.Alasannya adalah bahwa waktu yang diperlukan untuk menjalankan suatu instruksi-mikro juga harus mencakup waktu akses ROM. Sebaliknya, suatu keterlambatan dalam CLU hard-wired hanya mungkin disebabkan oleh keterlambatan waktu penyebaran melalui perangkat keras, yang relatif sangat kecil. Bagaimanapun juga, ilmu ekonomi kelihatannya lebih menyukai kendali hard-wired hanya jika sistem itu tidak terlalu kompleks dan hanya memerlukan beberapa operasi kendali.

Komputer Pipeline
          adalah suatu teknik implementasi dengan mana berbagai instruksi dapat dilaksanakan secara tumpang tindih (overlapped; hal ini mengambil keuntungan paralelisme yang ada di antara tindakan yang diperlukan untuk mengeksekusi suatu instruksi. Teknik pipeline ini dapat diterapkan pada berbagai tingkatan dalam sistem komputer. Bisa pada level yang tinggi, misalnya program aplikasi, sampai pada tingkat yang rendah, seperti pada instruksi yang dijalankan oleh microprocessor.
         Pada umumnya efisiensi sebuah komputer dinilai berdasarkan kecepatan  perangkat keras dan fasilitas-fasilitas  perangkat lunak. Penilaian ini disebut THROUGHPUT, didefinisikan sebagai jumlah pemrosesan yang dapat dikerjakan dalam suatu interval waktu tertentu. Salah  satu teknik yang mendorong peningkatan suatu sistem throughput yang cukup hebat disebut sebagai pemrosesan pipeline.
      Dalam komputer, pipeline adalah satu set dari elemen pemrosesan data dihubungkan secara seri, sehingga hasil keluaran dari satu elemen adalah masukkan bagi elemen berikutnya. Elemen - elemen dari sebuah pipeline sering dijalankan secara paralel.
Contoh pipeline dalam komputer adalah:
1.      Pipeline Instruksi. Biasanya digunakan di unit pemroses sentral agar istruksi - instruksi dapat dijalankan dalam satu waktu dalam satu sirkuit digital. Biasanya sirkuitnya dibagi dalam beberapa tahap, termasuk decode instruksi, aritmatika dan tahap - tahap penjemputan data dari register, dimana setiap tahap melakukan satu instruksi dalam satu waktu. 
2.     Pipeline Grafis, sering ditemukan dalam sebagian besar unit pemrosesan grafis, yang terdiri dari berbagai unit aritmatik atau unit pemroses sentral lengkap, yang menerapkan berbagai macam tahap dari operasi render yang umum (seperti proyeksi perspektif, kalkulasi warna dan pencahayaan, primitif gambar, dan sebagainya). 
3.     Pipeline Perangkat Lunak. Dimana keluaran dari suatu program langsung dipakai oleh program lain sebagai masukkan sehingga dapat langsung diproses.

Kategori Pipeline:

1.Pipeline Unit Arithmetic : berguna untuk operasi vector
2.Pipeline Unit Instruction : berguna untuk komputer yang mempunyai set instruksi yang sederhana

Proses Pipeline :

Instruksi-instruksi dari program yang sudah berurutan kemudian satu-persatu memasuki pipeline prosesor untuk diproses. Setiap tingkat pipeline memerlukan satu clock cycle untuk menyelesaikan satu instruksi dan meneruskan hasilnya ke pipeline berikutnya.

3 kesulitan pada metode Pipeline

- Karena beberapa instruksi diproses secara bersamaan ada kemungkinan instruksi tersebut sama-sama memerlukan resource yang sama, sehingga diperlukan adanya pengaturan yang tepat agar proses tetap berjalan dengan benar.
- Ketergantungan terhadap data, bisa muncul, misalnya instruksi yang berurutan memerlukan data dari instruksi yang sebelumnya.
-  Kasus Jump, juga perlu perhatian, karena ketika sebuah instruksi meminta untuk melompat ke suatu lokasi memori tertentu, akan terjadi perubahan program counter, sedangkan instruksi yang sedang berada dalam salah satu tahap proses yang berikutnya mungkin tidak mengharapkan terjadinya perubahan program counter.

Generic Pipeline
ada 4 tahapan dalam generic pipeline :
1. Fetch           : Ambil instruksi dari memori
2. Decode       : Terjemahkan arti dari instruksi
3. Execute       : Eksekusi instruksi yang telah di-decode
4. Write-back  : Simpan hasil eksekusi ke memori

Dekomposisi Pengolahan Instruksi

a.     Fetch
Adalah pengambilan data ke memori atau register
b.     Execute
Menginterpretasikan opcode dan melakukan operasi yang diindikasikan
c.      Fetch Instruction (FI)
Membaca instruksi berikutnya ke dalam buffer
d.     Decode Instruction (DI)
Menentukan Opcode dan operand specifier
e.     Calculate Operand (CO)
Menghitung alamat efektif seluruh operand sumber. Hal ini mungkin melibatkan displacement, register indirect, atau bentuk kalkulasi alamat lainnya.
f.       Fetch Operand (FO)
mengambil semua operand dari memori. Operand-operand yang berada di register tidak perlu diambil.
g.     Execute Insruction (EI)
Melakukan operasi yang diindikasikan dan menyimpan hasilnya
h.     Write Operand (WO)
Menyimpan hasilnya di dalam memori.

  ADA 2 TAHAP
1. Tahapan pertama mengambil instruksi dan mem-buffer-kannya.
2.  Ketika tahapan kedua bebas, tahapan pertama mengirimkan instruksi yang di-buffer-kan tersebut. Pada saat tahapan kedua sedang mengeksekusi instruksi, tahapan pertama memanfaatkan siklus memori yang tidak dipakai untuk mengambil dan membufferkan instruksi berikutnya.
-  Proses ini disebut instruction prefetch atau fetch overlap.

Penanganan Percabangan:

1. Multiple Streams
2. Prefetch Target percabangan
3. Loop buffer
4. Memprediksi percabangan
5. Delay percabangan

Konsep Pipeline adalah konsep alami di kehidupan sehari-hari. Umpamakan sebuah perakitan mobil, asumsikan beberapa langkah di jalur perakitan adalah untuk memasang mesin, memasang kap, dan memasang roda (dalam urutan tersebut, dengan berbagai macam kemungkinan langkah - langkah lain di antara langkah - langkah tersebut). Sebuah mobil di jalur perakitan hanya satu dari tiga langkah diatas dapat selesai dalam suatu waktu. Setelah sebuah mobil telah terpasang mesinnya, mobil tersebut pindah ke pemasangan kap, dan mobil kedua sedang dalam tahap pemasangan mesin. Setelah mobil pertama selesai memasang kap, mobil kedua dalam tahap pemasangan kap, mobil pertama dalam tahap pemasangan roda, dan mobil ketiga yang baru masuk dalam tahap pemasangan mesin. Dan begitu seterusnya. Jika seumpama pemasangan mesin butuh 20 menit, pemasangan kap butuh 5 menit dan pemasangan roda butuh 10 menit, maka menyelesaikan ketiga mobil tersebut jika satu mobil dirakit dalam satu waktu akan membutuhkan waktu 105 menit. Sedangkan jika menggunakan jalur perakitan seperti yang disebutkan diatas, waktu yang diperlukan untuk menyelesaikan ketiganya hanya 75 menit.

Pemrosesan Paralel
Pemrosesan paralel (parallel processing) adalah penggunakan lebih dari satu CPU untuk menjalankan sebuah program secara simultan. Idealnya, parallel processing membuat program berjalan lebih cepat karena semakin banyak CPU yang digunakan. Tetapi dalam praktek, seringkali sulit membagi program sehingga dapat dieksekusi oleh CPU yang berbea-beda tanpa berkaitan di antaranya.
Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer secara b ersamaan. Biasanyadiperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar ataupun karena tuntutan proses komputasi yang banyak. Untuk melakukan aneka jenis komputasi paralel ini diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan satu masalah. Untuk itu diperlukan aneka perangkat lunak pendukung yang biasa disebut sebagai middleware yang berperan untuk mengatur distribusi pekerjaan antar node dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi.
Pemrograman paralel adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan baik dalam komputer dengan satu (prosesor tunggal) ataupun banyak (prosesor ganda dengan mesin paralel) CPU. Tujuan utama dari pemrograman paralel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan (dalam waktu yang sama), semakin banyak pekerjaan yang bisa diselesaikan.
Komputasi paralel membutuhkan:
• algoritma
• bahasa pemrograman
• compiler
Sebagian besar komputer hanya mempunyai satu CPU, namun ada yang mempunyai lebih dari satu. Bahkan juga ada komputer dengan ribuan CPU. Komputer dengan satu CPU dapat melakukan parallel processing dengan menghubungkannya dengan komputer lain pada jaringan. Namun, parallel processing ini memerlukan software canggih yang disebut distributed processing software. Parallel processing berbeda dengan multitasking, yaitu satu CPU mengeksekusi beberapa program sekaligus. Parallel processing disebut juga parallel computing. Ø Klasifikasi arsitektur Komputer Parallel

Sesuai taksonomi Flynn, seorang Designer Processor, Organisasi Prosesor dibagi menjadi 4 :
A. SISD (Single Instruction Single Data Stream) Arus Instruksi Tunggal dan Data Tunggal
B. SIMD (Single Instruction Multiple Data Stream) Arus Instruksi Tunggal dan Multiple Data
C. MISD (Multiple Instruction Single Data Stream) Arus Multiple Instruksi dan Data Tunggal
D. MIMD (Multiple Instruction Multiple Data Stream) Arus Multiple Instruksi dan Multiple Data

1.  Organisasi Prosesor SISD
• Prosesor tunggal
• Aliran instruksi tunggal
• Data disimpan dalam memori tunggal
• Uni-processor

Keterangan:
CU : Control Unit
IS : Instruction Stream (Arus Instruksi)
PU : Processing Unit (Unit Pengolah yang biasa disebut ALU)
DS : Data Stream (Arus Data)
MU : Memory Unit (Unit Memori)

2.   Single Instruction, Multiple Data Stream – SIMD
• Single machine instruction
• Mengontrol eksekusi secara simultan
• sejumlah elemen-elemen pengolahan
• Berdasarkan Lock-step
• Setiap pengolahan elemen memiliki hubungan dengan memori data
• Setiap instruksi dieksekusi pada kumpulan data yang berbeda oleh prosesor yang berbeda
• Prosesor Vector and array

3. Multiple Instruction, Single Data Stream – MISD
• Rangkaian dari data
• Dikirimkan ke kumpulan prosesor
• Setiap prosesor mengeksekusi urutan instruksi yang berbeda
• Belum pernah diimplementasikan (komesial)

4. Multiple Instruction, Multiple Data Stream- MIMD
• Kumpulan/sejumlah prosesor
• Mengeksekusi secara simultan urutan instruksi yang berbeda
• Kumpulan data yang berbeda
• SMP, Cluster and sistem NUMA